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Endogeneity Problems in Multilevel Estimation of Education 

Production Functions: an Analysis Using PISA Data. 

 
 

Saïd Hanchane and Tarek Mostafa*

 
 

 
Abstract 
 
This paper explores endogeneity problems in multilevel estimation of education production 

functions. The focus is on level 2 endogeneity which arises from correlations between student 

characteristics and omitted school variables.  

 

We first develop a theoretical model in order to show that school and peer characteristics are 

the by-product of student background. This theoretical framework helps the identification of 

the hypotheses we would like to test within the empirical part. From an econometric point of 

view, the correlations between student and school characteristics imply that the omission of 

some variables may generate endogeneity bias. Therefore, in the second section of the paper, 

an estimation approach based on the Mundlak (1978) technique is developed in order to 

tackle bias and to generate consistent estimates. 

 

The entire analysis is undertaken in a comparative context between three countries: Germany, 

Finland and the UK. Each one of them represents a particular system. For instance, Finland 

is known for its extreme comprehensiveness, Germany for early selection and the UK for its 

liberalism. These countries are used to illustrate the theory and to prove that the level of bias 

arising from omitted variables varies according to the characteristics of education systems.
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20 Bedford Way, London WC1H 0AL. Room 706. England, United Kingdom. Office phone: +44 
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Introduction. 
 
Multilevel estimation of education production functions is plagued by the problem of 

endogeneity resulting from omitted variables. Typically, endogeneity arises when unobserved 

variables affecting the outcome of education are correlated with independent variables 

included in the model. In this paper, we are concerned with level 2 endogeneity arising from 

correlations between included student characteristics and omitted school variables.   

 

The correlations between student and school characteristics are mainly the result of 

stratification. For instance, unprivileged households are likely to live in relatively poor 

communities, due to the functioning of the housing market. These communities are populated 

with other households of similar type. Under these circumstances, the social mix of the 

schools operating in these neighbourhoods consists mainly of unprivileged students. Further, 

some school characteristics such as funding, teacher quality and availability may also be 

related to the status of the school and its location. Thus, it is possible to deduce that school 

characteristics are a by-product of students’ social status. However, it should be noted that the 

strength of stratification varies between education systems. For instance, early selection in 

Germany exacerbates stratification and strengthens the relation between student and school 

status, while comprehensiveness in Finland does exactly the opposite. 

 

The objective of the paper is to develop a multilevel estimation approach robust to 

endogeneity that allows us to overcome the omitted variable bias. The study is carried out in 

the context of three countries: Germany represents German speaking countries (known for 

early selection), Finland represents the Nordic countries (known for their 

comprehensiveness), and the UK for the English speaking ones (known for the liberal 

management of education).  

 

The paper is organized as follows: In the first section, a theoretical model is built upon the 

work of Epple and Romano (1998). In this model, an economy populated with individuals 

differentiated by income, aptitudes and social status is considered. This economy has an 

arbitrarily fixed number of public, private and mixed finance schools and school quality 

depends on funding, aptitude and social peer effects. The latter are considered to be non-linear 

in their means. Note that linearity in means was criticized in Hoxby and Weingarth (2005). 

Schools maximize their profits under several quality constraints. This maximization 
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transforms a continuum of student characteristics into a continuum of admission prices or 

tuition. In order to be admitted into a private school a student has to pay tuition fees that cover 

his marginal cost. In contrast, in public schools this marginal cost is covered entirely by 

public funds, and in mixed finance schools both tuition fees and public funds are used to 

cover the marginal cost of admitting a new student. In comparison with Epple and Romano 

(1998), non-linear peer effects, mixed finance schools and school funding are introduced. This 

theoretical model provides a convenient framework for the econometric analysis. On the one 

hand, it identifies the link between student and school characteristics and on the other, it 

justifies the multilevel nature of the empirical analysis.   

 

In the second section, the education production function (EPF), identified in the theory, is 

assessed. This EPF utilises student, school and peer characteristics to explain variations in 

performance scores in a multilevel framework. In this context, the omission of some school 

variables leads to level 2 endogeneity bias. Therefore, various specifications of the model are 

tested and an endogeneity robust estimation approach is developed. This approach is based 

on the Mundlak (1978) technique developed for panel data. 

 

In the third section of the paper, the estimation is carried out and the results are presented. 

The empirical illustration is done using PISA 2003 data for three countries: Germany, 

Finland and the UK. First, we present the results on the Hausman test and we show that the 

model omitting peer characteristics suffers from endogeneity. Further, the model which 

controls for the three vectors of variables: student, school and peer characteristics, is 

identified as the most robust. Secondly, we show that the level of bias differs between 

countries according to their contextual framework and according to their level of 

stratification. Thirdly, we prove that social peer effects are non-linear in their means. Finally, 

we compare our results to those published in PISA’s ‘Learning for Tomorrow’s world’ 

report, with the intention of affirming that the omission of key variables leads to bias and 

overestimation. 

 

It should be noted that the theoretical literature on stratification is recent and dates back to the 

early 1970s with the founding articles of Barzel (1973) and Stiglitz (1974). The major 

developments occurred in the 1990s, when two distinct bodies of literature emerged. The first 

studied spatial stratification between jurisdictions and neighbourhoods. It includes Westhoff 

(1977), Rose-Ackerman (1979), De Bartolome (1990), Epple, Filimon, and Romer (1993), 
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Nechyba (1997), Fernandez and Rogerson (1996), and Epple and Platt (1998). The second 

studied educational stratification between public and private schools. It includes Arnott and 

Rowse (1987), Epple and Romano (1998, 2006) and Nechyba (2003). The empirical literature 

includes a variety of studies that assess the determinants of achievements, such as peer 

effects, students’ ethnicity and immigrant status, students’ socioeconomic background, and 

school and teacher characteristics. Hanushek and Welch (2006) provide a good coverage of 

the studies of interest. Further, the recent econometric literature dealing with endogeneity 

problems includes Wooldridge (2002), Skrondal and Rabe Hesketh (2004), Fielding (2004), 

Snijders and Berkhof (2006), Kim and Frees (2006) and Grilli and Rampichini (2006). 

 
Section One: The Theoretical Framework. 
 
In this model, we consider an economy populated with a continuum of households 

differentiated by income, social status and student aptitudes. Social status is defined as a 

proxy for factors such as social class, cultural possessions, and parental education. All these 

factors are represented through a scalar 𝑘. Social status is taken into account to shed light on 

how school quality is affected by the social mix of enrolled students. Similarly, student 

aptitudes are defined to proxy factors such as motivation and interest for learning. Each 

household has parents and one student and forms a single decision making unit. Henceforth, 

“student” and “household” are used interchangeably. 

 

A student i  has an income iy , an aptitude ib  and a social status ik . Note that i  may designate 

a particular student or a type of students with the same combination of 𝑦, 𝑏 and 𝑘. These 

students attend a finite number of schools. A school is designated by an index j  (with 𝑗 =

1,2,3, … , 𝑗). 

 

Income, aptitudes, and social status are distributed in the population according to the density 

function ),,( kybf  which is positive and continuous on its support 

),0(),0(),0( maxmaxmax kybS ××= . Correlations between these three endowments are not 

considered for simplicity. 

 

Student utility is assumed to be a function of private consumption and school quality. It is 

noted as ),( qcU , where c  is consumption and q  is school quality. 𝑈 is increasing, strictly 
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quasi-concave and twice continuously differentiable. Students can attend only one school and 

they cannot supplement education elsewhere. Educational achievements are given by the 

education production function ),( jii qbaa = ; a  is continuous and increasing in both 

arguments. Achievements depend on students’ aptitudes and on the quality of their school. In 

other words, the access to higher quality schools is translated into higher achievements. In 

terms of inequalities, unequal access to education generates unequal outcomes. 

 

School quality is determined by expenditure per pupil, aptitude peer effects, social status peer 

effects and the dispersion of social status. Quality is increasing in all its arguments. It should 

be noted that we can reasonably assume that schools and policy makers appreciate social 

diversity within schools. However, one may think that parents with much social status prefer 

students of the same type and hence quality should be decreasing in the dispersion of social 

status. This is not the case in this model, since the problem is solved in two ways. On the one 

hand, schools maximize rents under a quality constraint which contains the dispersion of 

social status; so it is up to the schools to say whether school quality is increasing or not in this 

dispersion. On the other hand, high social status households who value social homogeneity 

may choose socially homogenous schools by paying higher tuition fees. A similar example 

would be desegregation in the US. Authorities may impose ethnic diversity into white 

majority schools (something that may enhance social cohesion, see Green et al 2009); 

however, white students can move to private non-diverse schools by paying more fees. In my 

model, authorities impose social diversity and then households choose a school according to 

their preferences (utility maximization).2

 

 

Aptitude peer effects are defined to be school average aptitudes, social status peer effects are 

defined to be school average social status, and the dispersion of social status is its within-

school variance. 

 

Three types of schools are considered: free public schools financed entirely by public funds, 

mixed finance schools financed by public funds and tuition fees paid by students and private 

schools financed solely by tuition fees.3

                                                 
2 In this model, communities and geographical stratification are not considered for simplicity and since PISA 
does not include territorial data. Mostafa (2009 a) provides a theoretical framework for spatial stratification.  

 In this economy, all households pay taxes, even if 

3 Mixed finance schools represent government-dependent private schools controlled by non-government 
organizations or with governing boards not selected by a government agency that receive a considerable part of 
their core funding from government agencies. 
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their children do not attend public or mixed finance schools. The funds allocated to education 

are collected through a proportional income tax, and the number of students is larger than the 

number of schools. 

 

The proportion of students of type ( )kyb ,,  in school j  is given by ),,( kybjα , and the 

number of students in school j is given by jl .with: 

∫∫∫=
s

jj dbdydkkybfkybl ),,(),,(α          (1) 

And [ ]1,0),,( ∈kybjα  

 
1. Schools. 

 

The production cost of education depends on the number of students in a school; it is given by 

jjjjjj FlnlnFlVlCo ++=+= 2
21)()( . 0>′V , 0>′′V , F is a fixed cost for school j  and 1n  

and 2n  are positive constants. Technical differences between schools are not included in the 

model.4 The absence of economies of scale in the production of education is translated into a 

large number of schools catering for different types of students. 5

 

 Furthermore, schools have 

perfect information on students’ income, aptitudes and social status. 

Schools are assumed to maximize profits under a quality constraint. Funding is provided by 

three sources: government subsidies, tuition paid by students and other earnings. 

 

( ) ( ) ( ) ( ) j
s

jij
s

jijj GdbdydkkybfkybpdbdydkkybfkybER ++= ∫∫∫∫∫∫ ,,,,,,,, αα  

jR  : School resources or revenues. 

ijE : Government subsidies for student i  attending school j . 

ijp : Tuition paid by student i  in school j . 

jG : Other earnings. 

                                                 
4 This assumption was used in Epple and Romano 1998 (p.38).  
5 Ferris and West (2004) provide evidence that large schools suffer from external and invisible costs “such as 
social problems that prevent the existence of economies of scale.” This is reflected through the positive sign of 

1n and 2n . 
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The sum of subsidies for a particular school is equal to jij EE∑ = . At equilibrium, the sum of 

government subsidies is equal to tax revenues in the economy ∑ = tYE j  (the budget is 

balanced). The tax rate is assumed to be exogenous. In some previous studies, tax rates were 

considered to be chosen through majority voting. However, the atomistic nature of the 

economy and the existence of political parties and complex political processes mean that 

majority voting over tax rates is simplistic. Furthermore, the presence of public and private 

schools prevents the existence of a majority voting equilibrium due to the non-single 

peakedness of individual preferences over tax rates. Hence, in order to avoid this problem and 

to simplify the theoretical framework, I am assuming the exogeneity of the tax rate.6

 

 

School quality is given by:  












Ο= 2,,, jjj

j

j
jj l

R
qq σθ          (2) 

With: 0lim
0

=
→ jR

q
j

, 0lim
0

=
→ jq

jθ
, 0lim

0
=

→Ο jq
j

, 0lim
02

=
→

jq
jσ

. 

jq  is increasing in 
j

j

l
R

, jθ , jΟ and 2
jσ . where: 

Expenditure per pupil is given by 
j

j

l
R

. 

 

Aptitude peer effects are given by average aptitudes in a school: 

( ) ( )∫∫∫=
s

ji
j

j dbdydkkybfkybb
l

,,,,1 αθ        (3) 

Social status peer effects are given by average social status in a school: 

( ) ( )∫∫∫=Ο
s

ji
j

j dbdydkkybfkybk
l

,,,,1 α        (4) 

The dispersion of social status in a school is given by its within-school variance: 

( )∫∫∫ Ο−=
s

jji
j

j dbdydkkybfkybk
l

),,(),,(1 22 ασ       (5) 

 

                                                 
6 Mostafa (2009 a) provides the conditions for the existence of a majority voting equilibrium when preferences 
are non-single peaked.  
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Aptitude peer effects, social status peer effects, the dispersion of social status and the number 

of enrolled students represent quality constraints under which school profit is maximized. 

Profit is equal to the difference between revenues and the cost of producing education

)( jjj lCoR −=π . At equilibrium, profits are equal to zero and no new entries on the 

education market are possible.7 )( jj lCoR = In this case, . Since the sum of expenditure per 

pupil in a school is given by j
j

j
j

j

j R
l
R

l
l
R

==∑ , it is possible to write that at equilibrium 

)( j
j

j lCo
l
R

≡∑ . In other words, the sum of expenditure per student is identical to the 

education production cost. 

 

School profit maximization and price discrimination. 

Schools maximize profit under several quality constraints. Even if public schools do not 

charge tuition, the authorities condition the level of subsidies according to student types. For 

private and mixed finance schools, the chosen level of quality and the level of public 

subsidies determine the tuition for each type of students. It should also be noted that private 

and mixed finance schools do not select students directly, since they admit any student who is 

able to pay the price corresponding to his type. In fact, displaying a prohibitive price is 

equivalent to refusing to admit a student. The quality constraints include average aptitudes, 

average social status, the dispersion of social status and the number of students attending a 

school. One should keep in mind that profit maximisation does not necessarily imply that 

schools are making an actual positive profit. Profit maximization is a mechanism that allows 

schools to optimize the allocation of resources (it is also used by public schools which are 

non-profit schools).  

  

Schools maximize profit under several quality constraints: 

FlVR jjj −−≡ )(maxπ   

subject to these constraints: 

∫∫∫=
s

jj dbdydkkybfkybl ),,(),,(α         (1) 

( ) ( )∫∫∫=
s

ji
j

j dbdydkkybfkybb
l

,,,,1 αθ        (3) 

                                                 
7 As long as school profits are positive, new schools will enter the market. See Epple and Romano 1998 (p.39). 
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( ) ( )∫∫∫=Ο
s

ji
j

j dbdydkkybfkybk
l

,,,,1 α        (4) 

( )∫∫∫ Ο−=
s

jji
j

j dbdydkkybfkybk
l

),,(),,(1 22 ασ       (5) 

These constraints can be transformed by replacing jl  by its value: 

1-   ( ) ( ) ( ) ( ) 0,,,,,,,, =− ∫∫∫∫∫∫
s

ji
s

jj dbdydkkybfkybbdbdydkkybfkyb ααθ  

2-   ( ) ( ) ( ) ( ) 0,,,,,,,, =−Ο ∫∫∫ ∫∫∫
s s

jijj dbdydkkybfkybkdbdydkkybfkyb αα  

3-   ( ) 0),,(),,(),,(),,( 22 =Ο−−∫∫∫∫∫∫
s

jji
s

jj dbdydkkybfkybkdbdydkkybfkyb αασ  

The Lagrangian function is then written in the following form: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) 







Ο−−′′′−

−Ο′′−

−′−−−−=Φ

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫∫∫∫∫

s s
jjijjj

s s
jijjj

s
ji

s
jjjjjj

dbdydkkybfkybkdbdydkkybfkyb

dbdydkkybfkybkdbdydkkybfkyb

dbdydkkybfkybbdbdydkkybfkybFlnlnR

),,(),,(),,(),,(

],,,,,,,,[

],,,,,,,,[

22

2
21

αασµ

ααµ

ααθµ

with jjj andµµµ ′′′′′′ ,,  the Lagrangian multipliers. 

Partial differentiation of the Lagrangian function over ),,( kybjα  yields: 

( )[ ] 0)()(2
),,(

22
21

* =Ο−−′′′−−Ο′′−−′−−−′=
∂

Φ∂
jijjijjijjjj

j

kkblnnR
kyb

σµµθµ
α

 

 

The optimal level of resources per student *
jR′  is the following: 

( )[ ]22
21

* )()(2 jijjijjijjjj kkblnnRMC Ο−−′′′+−Ο′′+−′++=′= σµµθµ
  (6) 

Note that *
jR′  represents the marginal cost (MC) of admitting a student of type ),,( kyb , with 

**
ijijj pER +=′ . (After the partial differentiation of jR over ),,( kybjα ). 

( ) ( )∫∫∫ ∂
′∂

=′
s

j
jj

j dbdydkkybfkybR
l

,,,,1 *

α
θ

µ  

( ) ( )∫∫∫ Ο∂
′∂

=′′
s

j
jj

j dbdydkkybfkybR
l

,,,,1 *

αµ  
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( ) ( )∫∫∫ ∂
′∂

=′′′
s

j
jj

j dbdydkkybfkybR
l

,,,,1
2

*

α
σ

µ  

jµ′ , jµ ′′ and jµ ′′′ are positive and they vary between schools. jµ′  represents the change to 

resources per student deriving from a change in school average aptitudes jθ . jµ ′′  represents 

the change to resources per student deriving from a change in school average social status jΟ

. jµ ′′′  represents the change to resources per student deriving from a change in the within-

school dispersion of social status 2
jσ .  

 

At equilibrium, profit is equal to zero, 0=jπ . New entries on the education market are 

possible as long as 0>jπ . When 0=jπ , no new entries are possible.  

 

In this equation, *
jR′  represents the resources needed to cover the marginal cost of admitting a 

student. The first term jlnn 21 2+  is the part resulting from the education production cost. It is 

positive and identical for all students attending the same school. The second, third and fourth 

terms reflect the externality of one’s own aptitude and social status on the school and the cost 

resulting from them. 

 

The second term, )( ijj b−′ θµ , represents the impact of one’s aptitude on average aptitudes. 

Students with above average aptitudes ij b<θ  have a negative externality cost on the school. 

The reverse is true for ij b>θ . This term is decreasing in ib  given a value of jθ . 

−∞=−′
+∞→

)(lim ijjb
bθµ . 

 

The third term, )( ijj k−Ο′′µ , represents the impact of one’s social status on average social 

status. Students with above average social status ij k<Ο  have a negative externality cost on 

the school. The reverse is true for ij k>Ο . This term is decreasing in ik  given a value of jΟ . 

−∞=−Ο′′
+∞→

)(lim ijjk
kµ . 
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The fourth term, ( )[ ]22
jijj k Ο−−′′′ σµ , represents the cost of being too close to the average of 

social status. Those who are far from the mean (who create social diversity) represent a 

negative externality cost for the school. In other words, when ik is far enough (higher or 

lower) from jΟ , ( )2jik Ο−  is positive and high. If it is higher than 2
jσ , then the term 

( )[ ]22
jijj k Ο−−′′′ σµ is negative. The reverse is true for ik close enough to jΟ . This term, given 

constant values of 2
jσ and jΟ , is concave in ik  and attains its maximum at jik Ο= . 

( )[ ] −∞=Ο−−′′′
±∞→

22lim jijjk
kσµ . 

 

Note that *
jR′  might be negative, depending on the level of government subsidies and the 

position of individual aptitude and social status relative to the means. Equation (6) represents 

a compensation scheme; low aptitude students subsidize higher aptitude ones, low social 

status students subsidize high social status ones and students with social status close to its 

average subsidize those who are far from the average (those who create social diversity). 

Furthermore, this equation indicates that the access to educational quality is conditioned by 

student characteristics. In other words, those who have low combinations of ( )kyb ,,  are the 

most disadvantaged since the market operates to their detriment (except that low k  students 

might be rewarded through the forth term of the equation). 

 

Equation (6) allows us to overcome the strict distinction between public and private schools. 

Different types of education finance can be considered: we can start with free admission 

public schools with 0=ijp  for all i  and go through mixed finance schools where both p  and 

E  are positive and eventually reach purely private schools where 0=ijE . 

When *
jR′  is replaced by its value we obtain the following equations: 

 

For private schools, we have: 

( )[ ]22
21

* )()(2 jijjijjijjjij kkblnnp Ο−−′′′+−Ο′′+−′++= σµµθµ
  

With 0=ijE .8

                                                 
8 Pricing is done according to the marginal cost of admitting a student. 
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Note that *
ijp can be negative for some students (e.g. scholarship) but not for all, for the 

following reason: a private school cannot possibly offer scholarships for all its students. In 

order to offer a scholarship for one student, another has to pay a positive tuition. This can be 

seen through the sum of *
ijp  which is always positive. 

( ) ( )[ ] ( )[ ] ( )[ ]{ }∑ ∑∑∑∑
= ====

>Ο−−′′′+−Ο′′+−′++=
j jjjj l

i

l

i
jijjijj

l

i
ijj

l

i
j

l

i
ij kkblnnp

1 1

22

11
21

1

* 02 σµµθµ since 

( ) 02
1

21 >+∑
=

jl

i
jlnn  and 

( )[ ] ( )[ ] ( )[ ]{ }∑ ∑∑
= ==

=Ο−−′′′+−Ο′′+−′
j jj l

i

l

i
jijjijj

l

i
ijj kkb

1 1

22

1
0σµµθµ  

Mathematical details :  

( )[ ] ( ) ( ) ( ) ( )[ ]

( ) 0),,(),,(

...... 1
1

1

=−′=







−′=

−++−′=−′++−′=−′

∫∫∫

∑
=

jjjjj
s

jijjj

ljjj

l

i
ljjjjijj

lldbdydkkybfkybbl

bbbbb
j

j

j

θθµαθµ

θθµθµθµθµ
  

The same applies for ( )[ ]∑
=

=−Ο′′
jl

i
ijj k

1
0µ and ( )[ ]{ }∑

=

=Ο−−′′′
jl

i
jijj k

1

22 0σµ  

 

For mixed finance schools, we have: 

( )[ ]22
21

* )()(2 jijjijjijjjijij kkblnnEp Ο−−′′′+−Ο′′+−′+++−= σµµθµ
 

For mixed finance schools, the level of subsidy per student ijE  is determined by authorities 

and not by optimization. Schools can only choose the level of tuition to apply. Pricing is done 

according to the level of quality, the type and number of enrolled students and the level of 

subsidies. Note that theoretically it is possible to charge negative tuition fees (scholarships) 

for all students, if ijE  is positive and very high. However, this is unrealistic, since authorities 

would not subsidize schools to the extent that they could offer scholarships to all students. A 

necessary condition is: 00)2(
1

*

1
21 >⇒>++− ∑∑

==

jj l

i
ij

l

i
jij plnnE . 
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For public schools, we have: 

( )[ ]22
21 )()(2 jijjijjijjjij kkblnnE Ο−−′′′+−Ο′′+−′++= σµµθµ

  

With 0=ijp  for all i . 

Given the quality of a public school, student types determine the amount of local subsidies 

needed to cover the marginal cost of admitting them. Local authorities determine the level of 

subsidies according to the type of enrolled students while maintaining an open enrolment 

policy. In other words, all students are admitted regardless of their type. Note that ijE  can be 

negative for some students; however, ∑
=

>
jl

i
ijE

1
0  for the same aforementioned reasons.  

2. Students. 

 

Since public, mixed finance and private schools coexist, students have a large set of choices. 

They are price takers and they maximize their utility through school choice given their 

characteristics and school tuition. 

 

Utility maximization is done under the following budget constraint: ijii pytc −−= )1( , with t  

the tax rate. Note that the level of individual utility in the chosen school should at least be 

equal to the maximum utility that can be obtained elsewhere. The price taking assumption is 

given through the following property: 

( )[ ] ( )[ ]'' ,1,1 jijijiji qpytMaxUqpytU −−≥−−
 

with j and 'j two schools with 'jj ≠ . 

Utility maximization implies that students have to choose between consumption and tuition in 

order to attain the level of school quality that would maximize their utility function. Utility 

maximization yields the following indirect utility:  

[ ]jijijjjijiiii qpytMaxUEkybW ,)1(),,,,,,( 2 −−=Ο σθ  
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Describing students’ feasible choice sets. 

Consider two schools j and 'j ; the first offers a combination of tuition and quality ( )jij qp , to 

student i, and the second offers a combination ( )'' , jij qp . If 'ijij pp > and 'jj qq ≤ , then only 

school 'j is part of the feasible choice set of student i, since no student would agree to pay a 

higher price for lower or equal quality. Hence, for each student, the feasible set of choices 

exhibits a hierarchy of tuition and quality levels. For j and 'j to be part of the choice set, 

'ijij pp > and 'jj qq > should be verified. Furthermore, private schools should have higher 

quality than public schools since no one would agree to pay tuition fees when it is possible to 

obtain a higher quality free of charge. Note that the choice of a particular school from the set 

depends on utility maximization. 

 

3. The Implications of the Theory. 

 

First, school quality is a by-product of individual characteristics. The pricing function 

transforms a continuum of student characteristics into a continuum of tuition fees levels. 

Tuition fees affect utility through their impact on consumption and determine the educational 

quality that can be afforded. In other words, students are not randomly stratified into schools 

and stratification is determined by their aptitudes, social status and income. This stratification 

mechanism is summarized through the education production function (EPF) ),( jii qbaa = . 

This EPF not only tells us that achievements depend on student and school characteristics but 

it also says that school characteristics are determined by student type. Further, the theory 

implies that students stratified into the same school bear some resemblance. However, it 

should be noted that the theoretical framework only gives us suggestions about what to 

expect; therefore full understanding of the implications of stratification can only be achieved 

through empirical analyses. 

 

Secondly, from an econometric point of view, the theory implies that student and school 

characteristics are expected to be correlated and that causality goes from the first to the 

second. This has major implications for the estimation. Omitting some school characteristics 

may generate endogeneity bias, since these variables will be absorbed by the error term and 

the latter will be correlated with the included individual characteristics. Moreover, the 
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resemblance between students attending the same school warrants the use of multilevel 

modelling. 

 

Thirdly, the level of correlation between student and school characteristics differs across 

countries. Some have comprehensive schooling (Finland) and the correlation is expected to be 

weak, while others have early selection (Germany) and the correlation and bias are expected 

to be stronger. Thus, international comparisons are essential in understanding the functioning 

of the EPF. The comparative nature of the empirical analysis can also be seen as an 

implication of the theory. 

 

Fourthly, inequalities in performance scores can no longer be considered as the mere impact 

of a student’s social and economic background on his performance, since school 

characteristics are likely to be a source of inequality too. Hence, inequalities are channelled 

through students’ own characteristics and through stratification-determined school 

characteristics. 

 

From this discussion it is possible to identify a number of hypotheses that we would like to 

test in the empirical part of the analysis.  

 

First, the omission of some school characteristics (peer effects or pure school variables) may 

generate an endogeneity bias, thus it is essential to test various specifications of the empirical 

model in order to identify the most robust one. Secondly, countries with differing education 

systems may be affected differently by this bias due to different levels of stratification and to 

variations in the strength of correlation between student and school variables. Thirdly, it 

would also be interesting to test whether social peer effects are linear in their means and 

whether achievements depend on the distribution of peers (the dispersion of social status). 

Finally, we would like to compare our findings with some results obtained using the same 

data and published in the OECD’s PISA reports. The objective would be to affirm that the 

omission of key variables leads to bias and overestimation.  

 

In the next section, a full multilevel approach is developed in order to estimate the effect of 

student and school characteristics on performance scores. We assess endogeneity problems, 

using a Hausman test, by contrasting three different models that omit certain variables. The 

models are estimated for three countries: Germany, the UK and Finland. Each one of these 
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represents a particular schooling system. Germany is an early selection system where student 

background is expected to be highly correlated with school characteristics and peer effects. In 

contrast, Finland is known for its extreme comprehensiveness, where student and school 

characteristics are not expected to be strongly correlated. The UK has a system characterised 

by the liberal organisation of education, and is expected to be middle ranking in comparison 

with the other two countries.9

 

 The results in the different models are generated through an 

estimation procedure based on the Mundlak technique (1978) developed for panel data and 

adapted for multilevel regressions in this paper. 

It is worth noting that in the empirical analysis, we are not reconstructing stratification as we 

did in the theoretical model. Instead, we are using an already stratified sample of students in 

order to assess the consequences of stratification on estimation procedures. In other words, 

we assume that the first step – the rise of stratification – has happened at an earlier stage and 

that we can only analyze its implications. The theory in this paper is used to provide the 

structure for our analysis and to identify the hypotheses that we want to explore. 

 

Section Two: Multilevel Modelling and Endogeneity Problems. 

 
1. Data, Variables and Countries. 

 

In the empirical analysis, we are using PISA 2003 for three countries: Germany, the UK, and 

Finland. This data source was selected for several reasons. First, the data is collected using 

the same sampling procedure across all countries which is very convenient for international 

comparisons. Secondly, PISA is age based and the sampled students are aged between 15 and 

3 months and 16 and two months. This coverage helps measuring the extent to which 

knowledge was acquired till the age of 15-16 independently of the structure of the education 

system. Thirdly, the major domain of assessment in PISA 2003 is mathematics which tends 

to be more universal than reading since it is not subject to cultural relativity. Finally, the 

PISA dataset provides a wide array of student and school variables that are needed for the 

analyses. 

 

                                                 
9 Mostafa (2009 a and b) provide a comparative analysis between these three different countries.   
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In the EPF ),( jii qbaa = , student aptitudes ib  are replaced with various student 

characteristics and school quality jq is replaced with several proxies of quality and peer 

effects. 

 

The dependent variable is student performance scores in mathematics on the PISA 2003 

standardized test. The independent variables are the following: 

 

Student characteristics (reflecting student aptitudes ib ): 

ESCS: Economic, social and cultural status.  

COMPHOME: An indicator of computer facilities at home. 

INTMAT: An indicator of interest in mathematics.   

ANXMAT: An indicator of anxiety in mathematics.   

DISCLIM: An indicator of the perception of discipline in a school.  

ETR: A dummy variable taking the value of one if a student is a first generation immigrant or 

a non-native. Henceforth, this category is simply called “non-natives”. Note that ETR is not a 

measure of ethnicity. 

 

Peer effects, school aggregates of individual characteristics (reflecting jθ , jΟ and 2
jσ  in the 

theory): 

DESCS: School average ESCS, depicting economic, social and cultural peer effects. 

VARESCS: The within-school dispersion of ESCS, reflecting nonlinearities in peer effects 

(the impact of the social diversity within a school). 

DCOMPH: School average COMPHOME, depicting the possession of computer facilities 

peer effects. 

DINTMAT: School average INTMAT, depicting peer effects resulting from a generalized 

interest and enjoyment of mathematics within a school.   

DANXMAT: School average ANXMAT, depicting peer effects resulting from a generalized 

feeling of anxiety and helplessness in mathematics.   

DDISCL: School average DISCLIM, depicting the impact of a generalized perception of 

discipline in a school. 

DETR: The percentage of non-natives or first generation immigrants in a school. 
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Pure school characteristics (reflecting funding 
j

j

l
R

 and other school characteristics): 

Compweb: The proportion of computers connected to the web in a school. 

Mactiv: The number of activities used to promote engagement with mathematics in a school.   

Mstrel: An index measuring poor student teacher relations. 

Tcshort: An index measuring principals’ perception of potential factors hindering the 

recruitment of new teachers, and hence instruction. 

Tcmorale: An index depicting principals’ perception of teacher morale and commitment. 

Teacbeha: An index depicting principals’ perception of teacher-related factors hindering 

instruction or negatively affecting school climate. 

Private: A dummy variable taking the value of one if a school is private (private dependent 

and independent schools are combined). Note that each of the selected countries, in fact, has 

only one of the two types of private schools. Thus, the two types have to be combined since 

estimation is not possible if the frequency of one of the types is close to zero. However, the 

interpretation of the results is made according to the predominant type. 

Scmatedu: The quality of educational infrastructure in a school as perceived by the principal. 

Academic: A dummy variable taking the value of one if a school selects its students according 

to their academic records. 

 

The countries included in the analysis are: Germany, Finland and the UK. On the one hand, 

Germany is one of the few remaining countries in Western Europe to have selective schooling 

in the lower secondary phase, which starts around the age of 10. This early selection is the 

main source of social and ability stratification. In contrast, Finland is known for its extreme 

comprehensiveness with nine years of all-through schooling in the primary and lower 

secondary phases. Therefore, Finland is one of the least stratified education systems in the 

world. On the other hand, the UK has four distinct education systems in England, Wales, 

Scotland and Northern Ireland which vary in significant respects. Whilst the system in 

Scotland is fully comprehensive at the lower secondary stage, the other three systems retain 

selective grammar schools in varying degrees. The UK generally, is characterized by large 

territorial disparities, and an uneven spread of comprehensive schooling. Thus, it also has a 

stratified education system, even though stratification is more moderate than in Germany. For 

descriptive statistics on stratification see Mostafa (2009b). 
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Table 1. The number of sampled students and schools for each country is the following: 

  Germany  Finland  UK 
Number of students 4114 5728 9045 
Number of schools 216 197 383 

 

2. Endogeneity Problems in Multilevel Analyses. 

 

The general model to be estimated is the following: ijjjijjij KXXY εγγββ ++++= • 210  with 

jj Vc +=0β  

when j0β is substituted out, the equation becomes. 

ijjjjijij VKXXcY εγγβ +++++= • 21  

This model is a random intercept multilevel model. The intercept is divided into two 

elements: 𝑐 is the overall intercept, which is constant for all schools and equal to the average 

of the intercepts j0β , and a random part jV , denoting school 𝑗’s departure from the overall 

intercept, which can also be seen as a unique effect of school 𝑗 on the average intercept 

(Raudenbush and Bryk, 2002). jV  can be considered as comprising the unobserved school 

characteristics, and is assumed to have a zero mean and a variance of 2τ . 

ijX : is a vector of student characteristics (student i attending school j). 

jX • : is a vector of peer effects (school aggregates of student characteristics). 

jK : is a vector of pure school characteristics (e.g. funding, teacher morale…). 

ijjV ε+ : is the error term of the model. With )N(0,~ 2σε ij . 

In this multilevel model, the student level is called level one and the school level is called 

level two. 

 

The assumptions on which this model relies are the following: 

 

a) The independent variables at each level are not correlated with the random effects 

(error terms) on the other level, 0),cov( =jij VX , 0),cov( =• ijjX ε  and 

0),cov( =ijjK ε . In other terms, any unobservable student characteristics relegated to 

the error term should not be correlated with the observable school characteristics jX • , 
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and jK . Similarly, any unobservable school characteristics relegated to the error 

terms should not be correlated with the observable student characteristics ijX . 

b) The level one independent variables are not correlated with level one error terms. 

0),cov( =ijijX ε . In other words, any unobservable student characteristics relegated to 

the error term should not be correlated with the observable student characteristics ijX . 

c) The level two independent variables are not correlated with level two error term - 

0),cov( =• jj VX , and 0),cov( =jj VK . In other words, any unobservable school 

characteristics relegated to the error term should not be correlated with the observable 

school characteristics jX • , and jK . 

d) Each level one error term ijε  is independent and normally distributed with a mean of 0 

and a constant variance of 2σ . )N(0,~ 2σε ij . 

e) Each level two random effect (error term) is normally distributed with a mean of 0 and 

a variance 2τ . )N(0,~ 2τjV . These error terms are independent among the level two 

schools. 

f) The error terms at level 1 and 2 are independent. 0),cov( =jij Vε . 

 

It should be noted that the homoscedasticity and normality assumptions (assumptions b, c, d, 

e, f) are tested using scatter plots of error terms and Q-Q plots respectively.  

 

In this paper, the main concern is to test the cross-level assumption (assumption a), where the 

random effect on the intercept jV is correlated with a level one independent variable ijX . In 

this case, the assumption that 0),cov( =jij VX  is violated, and some unobservable school 

characteristics relegated to the error term, are correlated with the observable student 

characteristics ijX . If this assumption is breached, the coefficient estimates might be biased. 

This problem is called the level 2 endogeneity problem (Grilli and Rampichini, 2006). 

 

Other forms of endogeneity may arise when level 2 independent variables (school 

characteristics) are correlated with level 1 error terms ( 0),cov( ≠• ijjX ε  and 0),cov( ≠ijjK ε ). 

Or in other words, omitted student characteristics are correlated with the included school 

variables. In this paper we will only focus on the level 2 endogeneity problem. 
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In what follows, the endogeneity-robust Mundlak approach (1978) used for the estimation of 

panel data models is adapted for the estimation of multilevel models. It should be noted that 

multilevel data and panel data are very similar. In the former, we have a number of students 

nested within a number of schools, while in the latter we have a number of time periods 

nested within a number of individual units. Mundlak (1978) noted that a straightforward 

solution to solve endogeneity problems would be to include level 2 means jX •  into the 

equation. Snijders and Berkhof (2006) also noted that the inclusion of such a variable permits 

the disentanglement of within- and between-clusters effects. In the case of PISA, this has an 

intuitive interpretation, since school averages represent different forms of peer effects within a 

school. One should note that in this type of models it is not possible to disentangle peer 

effects from selection effects, and probably there is no need to do so, since we are interested 

in knowing how the correlation between student and school characteristics generates 

endogeneity bias. For instance, In Germany students have been stratified at the age of 10; and 

since PISA assesses students at the age of 15, we can say that our “peer effects” represent the 

impact of 5 years of socialization as well as the initial effect of selection. Furthermore, one 

should not confuse our model with conventional models of peer effects where the objective is 

to identify the effect of peers at period  𝑡 on the outcomes of 𝑡 + 1. 

 

In order to assess endogeneity problems, four different specifications of the aforementioned 

model will be estimated. The first omits peer effects; the second omits pure school 

characteristics; the third considers the three vectors of variables, and finally the fourth 

introduces the within-school dispersion of economic social and cultural status (VARESCS) as 

an independent variable. Note that VARESCS is not included in models 1, 2 and 3; its 

inclusion is only intended to assess whether social peer effects are linear in their means. 

Further, models 1 and 2 are intended to show that the omission of key level 2 variables 

(school characteristics) might cause endogeneity problems. As mentioned earlier, all these 

models are estimated using a multilevel approach based on the Mundlak technique (1978). 

The approach consists of semi-demeaning the estimated equations. By doing so, it is possible 

to separate the within and between parts of the model and to estimate them separately. In what 

follows, we present the results. All algebraic details related to the estimation are relegated to 

the appendix. 
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Section Three: Estimation and Results. 
 

In this section, the estimation of the four aforementioned models is carried out. Since the 

objective of the paper is to prove the existence of endogeneity when some school variables are 

omitted; we decided to limit the interpretation to the Hausman test and to the comparison 

between the different models. It should be noted that Mostafa (2009a) provides an 

interpretation of the regression coefficients in a cross-country comparative framework.  

 

1. The Hausman Test. 

 

The Hausman test is a specification test developed by Jerry Hausman. The test identifies the 

presence of level 2 endogeneity. The null hypothesis is that the random effects (on the 

intercept) are not correlated with any of the students’ variables, 0),cov( =jij VX . If the null 

hypothesis holds, then the estimates of the coefficients are both consistent and efficient. The 

Hausman test tests a fixed effects specification of the models against the random effects one. 

If the null hypothesis is rejected, we can conclude that the random effects model suffers from 

endogeneity and that the fixed effects specification is still better. Furthermore, after the 

transformation of the model according to the Mundlak approach, the estimates of the betas 

(the coefficients on level 1 ‘student’ variables) are consistent regardless of whether the null 

hypothesis is valid. 

 

Table 2. The results of the Hausman test. 

  Germany  Finland  UK  
Model 1 309.07 5.68 125.66 
Model 2 0 0 0 
Model 3 0 0 0 
Model 4 0 0 0 

 

As we can see, the Hausman test fails for the first model where the null hypothesis is rejected 

and holds for models 2, 3 and 4. A number of findings can be drawn: 

 

a) Model one did not control for peer effects (school averages of the ijX s). These school 

characteristics were relegated to the error term jV  and are correlated with student level 

variables. Thus, model 1 suffers from endogeneity and the null hypothesis on the 
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Hausman test is rejected. The fixed effects specification is preferred to the random 

effects one and the coefficients on the latter are biased. 

b) The only country that is close to passing the Hausman test in model one is Finland. 

This indicates that the strength of the correlation between student characteristics and 

unobserved peer effects is low. This is perhaps due to the fact that schooling in 

Finland is very comprehensive and schools are homogenous. Hence, it is unlikely that 

student characteristics are highly correlated with those of the school (mainly peer 

characteristics). Finland is followed by the UK, then by Germany. The latter has the 

strongest value on the test which means that student characteristics and school peer 

effects are highly correlated. This is not surprising since early selection implies that 

student characteristics determine to a large extent those of their school. The UK is 

middle ranking. 

c) The failure of the Hausman test is a strong indication that the specification in model 1 

is not reliable. Even if the Mundlak transformation generates consistent estimates for 

the 𝛽𝑠, the rest of the coefficients are still biased. 

d) Models 2, 3 and 4 passed the Hausman test. The null hypothesis holds and there are no 

correlations left between students’ variables and unobserved school characteristics 

relegated to the error term. 

e) In model 2, pure school characteristics were omitted. However, the model still passed 

the Hausman test. This is an indication that endogeneity arises not from the correlation 

between student level variables and omitted pure school characteristics but from the 

correlation between the former and omitted peer effects (since model 1 did not pass 

the test). 

f) Models 3 and 4 are the most complete; they controlled for peer effects and pure school 

characteristics and they passed the test. Therefore, these are the ones to be interpreted. 

 

In conclusion, we can say that the Hausman test answers two questions that arose from the 

theory developed in section one. Firstly, when peer effects are omitted the model failed the 

Hausman test. But, when pure school characteristics are omitted, the model passed the test. 

Therefore, we can deduce that student characteristics are highly correlated with peer 

characteristics ( ib and jθ in the theory). Thus, it is essential to control for peer effects in any 

estimation, since their omission generates endogeneity problems and biased results. Further, 

peer effects are more important than pure school characteristics, since the omission of the 
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latter did not affect the viability of the model. Secondly, the Hausman test has proven that 

different countries have different levels of correlation between student variables and peer 

characteristics. In other words, the extent of the bias that may arise from level 2 endogeneity 

vary according to the context of each country. In fact, countries known for their 

comprehensiveness (Finland) are less affected by the bias than countries known for early 

selection (Germany) or for freedom of choice (the UK). This is due to the fact that 

comprehensiveness mitigates the impact of stratification by making schools more 

homogenous and choice less relevant. In contrast, early selection and liberalism in the 

organization of schooling exacerbate the impact of stratification by intensifying the role that 

student-related factors play in determining school characteristics. 

 

2. The Regression Coefficients. 

 

(***) stands for significance at the level of 1%, (**) for significance at the level of 5% and (*) 

for significance at the level of 10%. 

 

Table 3. The regression coefficients on student level variables. 

Variables Germany  Finland  UK  
  Coefficient Std Error Coefficient Std Error Coefficient Std Error 

ESCS 11.61(***) 1.24 26.85(***) 1.24 23.26 (***) 0.99 
COMHOME 1.28 1.22 -2.72(**) 1.15 8.20 (***) 0.99 

INTMAT 4.69(***) 0.95 14.51(***) 1.05 -1.16 0.87 
ANXMAT -19.03(***) 0.90 -31.96(***) 1.08 -25.11(***) 0.87 
DISCLIM 2.63(***) 0.82 1.41 1.00 12.33(***) 0.70 

ETR -27.92(***) 2.92 -63.49(***) 6.37 -5.18 (*) 2.90 
 

Table 4. The regression coefficients on school level variables. 

Variables Germany 
  Model 1 Model 2 Model 3 Model 4 

  Coef.   SE Coef.   SE Coef.   SE Coef.   SE 

DESCS . . . 66.15 *** 1.63 60.38 *** 1.81 61.16 *** 1.80 
DCOMPH . . . 26.08 *** 2.78 28.58 *** 2.94 24.95 *** 2.98 
DINTMAT . . . -23.70 *** 2.19 -24.31 *** 2.08 -23.98 *** 2.08 
DANXMAT . . . -14.14 *** 1.97 -16.54 *** 1.93 -16.36 *** 1.89 

DDISCL . . . 28.19 *** 1.32 25.03 *** 1.47 25.27 *** 1.47 
DETR . . . 10.57 *** 3.41 6.38 *** 3.31 6.09 *** 3.38 
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Compweb 38.95 *** 2.98 . . . 10.97 *** 1.79 8.85 *** 1.78 
Mactiv 29.80 *** 1.53 . . . 1.26  0.80 0.52  0.81 
Mstrel -137.52 *** 24.01 . . . 12.95  11.57 6.06  11.45 
Tcshort -17.86 *** 1.19 . . . -7.63 *** 0.54 -7.54 *** 0.53 

Tcmorale -0.04 *** 0.00 . . . 0.03 *** 0.00 0.04 *** 0.00 
Teacbeha -12.64 *** 1.41 . . . -4.30 *** 0.79 -4.15 *** 0.76 
Private 34.07 *** 2.10 . . . -11.36 *** 2.05 -12.56 *** 2.13 

Scmatedu 0.00  0.01 . . . -0.07 *** 0.00 -0.07 *** 0.00 
Academic 25.91 *** 2.02 . . . 7.29 *** 0.98 7.61 *** 0.96 
Varescs . . . . . . . . . 16.50 *** 1.60 

Intercept 459.18   3.44 . . . 466.33   2.15 461.20   2.15 
 

Variables Finland 
  Model 1 Model 2 Model 3 Model 4 

  Coef.   SE Coef.   SE Coef.   SE Coef.   SE 

DESCS . . . 2.44 *** 1.12 2.82 *** 0.95 2.82 *** 0.95 
DCOMPH . . . 3.96  1.41 1.76  1.43 1.60  1.43 
DINTMAT . . . -2.84 *** 1.47 -6.01 *** 1.37 -6.10 *** 1.37 
DANXMAT . . . 6.14 *** 1.70 2.87 *** 1.58 2.38 *** 1.58 

DDISCL . . . 3.11 *** 0.80 -0.10  0.82 -0.43  0.82 
DETR . . . 44.12 *** 3.31 55.58 ** 3.14 56.65 ** 3.15 

Compweb 13.00 *** 4.02 . . . 4.83 ** 2.44 5.20 ** 2.43 
Mactiv 2.74 * 1.46 . . . 1.44 *** 0.47 1.56 *** 0.47 
Mstrel -131.34 *** 21.28 . . . -124.76 *** 8.02 -122.70 *** 7.99 
Tcshort 1.06  1.05 . . . -0.35  0.37 -0.42  0.37 

Tcmorale 5.47 *** 0.96 . . . 1.78 *** 0.32 1.76 *** 0.31 
Teacbeha -2.45 *** 0.78 . . . -1.40 *** 0.43 -1.47 *** 0.43 
Private -15.00 *** 3.70 . . . -18.42 *** 1.46 -18.37 *** 1.46 

Scmatedu 0.16  0.81 . . . 0.24  0.37 0.08  0.37 
Academic 12.64 *** 3.51 . . . 11.15 *** 1.01 11.13 *** 1.02 
Varescs . . . . . . . . . -4.38 *** 1.53 

Intercept 532.41   5.17 . . . 528.74   2.44 530.51   2.61 
 

Variables UK 
  Model 1 Model 2 Model 3 Model 4 

  Coef.   SE Coef.   SE Coef.   SE Coef.   SE 

DESCS . . . 51.40 *** 0.84 42.82 *** 1.09 41.64 *** 1.06 
DCOMPH . . . -15.78 *** 1.40 -6.33  1.58 -3.78 *** 1.53 
DINTMAT . . . -8.88 *** 1.12 -8.27 *** 1.16 -8.62 *** 1.16 
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DANXMAT . . . -13.83 *** 1.19 -12.61 *** 1.14 -10.00 *** 1.14 
DDISCL . . . 11.39 *** 0.69 9.38 *** 0.72 10.08 *** 0.70 
DETR . . . -35.14 *** 2.40 -35.83 *** 2.36 -40.18 *** 2.37 

Compweb 18.46 *** 3.09 . . . 17.70 *** 1.17 18.63 *** 1.13 
Mactiv -2.36 *** 0.59 . . . -2.97 *** 0.24 -3.17 *** 0.23 
Mstrel -282.90 *** 26.28 . . . -76.85 *** 7.78 -92.12 *** 7.43 
Tcshort -6.76 *** 0.49 . . . -3.79 *** 0.31 -2.91 *** 0.31 

Tcmorale 0.51  0.71 . . . -2.15 *** 0.34 -1.61 *** 0.33 
Teacbeha 6.83 *** 0.75 . . . -1.28 *** 0.34 -2.22 *** 0.33 
Private 71.68 *** 2.33 . . . 14.53 *** 1.46 22.75 *** 1.55 

Scmatedu -0.96 * 0.56 . . . 2.56 *** 0.27 2.34 *** 0.25 
Academic 11.37 *** 1.82 . . . 4.51 *** 0.97 3.13 *** 0.99 
Varescs . . . . . . . . . 21.90 *** 1.09 

Intercept 505.68   3.93 . . . 492.80   1.38 478.27   1.53 
 

As noted before, the coefficients on student level variables (betas) are identical for all models. 

However, the coefficients on school level variables (gammas) differ between models. Model 1 

failed the Hausman test and thus, is considered to be unreliable. Model 2 passed the Hausman 

test but is still incomplete since pure school characteristics were omitted. Models 3 and 4 are 

the most complete. Model 3 considered the three vectors of independent variables: student 

characteristics, pure school characteristics, and peer effects, and model 4 added the within-

school dispersion of student ESCS as an independent variable. These two models are 

considered to be the benchmark against which model 1 and 2 are compared. Note that, since 

the variance of ESCS was added as an independent variable in model 4, the coefficients of 

models 3 and 4 can be slightly different. 

 

One should bear in mind that the Mundlak estimation procedure only solves endogeneity 

problems that arise from a correlation between included student variables and omitted school 

characteristics (e.g. cross-level endogeneity or level 2 endogeneity). Thus, even if model 2 

passed the Hausman test, it may still suffer from endogeneity bias resulting from the 

correlation between included school peer effects and omitted pure school characteristics (e.g. 

same-level endogeneity). 

 

From the regression results, it is possible to see that the coefficients for model 1 are 

systematically overestimated when compared with those of models 3 and 4, and some have 

different sign and significance levels. Thus, the results from model 1 are clearly inconsistent. 



 28 

In contrast, the results from model 2 are relatively close to those of models 3 and 4. This 

finding confirms the results on the Hausman test. Model 1 suffers from level-2 endogeneity 

bias while model 2 is slightly inconsistent due to the omission of pure school variables. 

 

The other major result concerns the regression coefficient on the within school dispersion of 

ESCS (Varescs) which measures within-school social diversity, and reflects nonlinearities in 

peer effects. 

 

The linear in means models assume that a single student whose ESCS raises that of a school 

by one point has the same effect as several students whose combined ESCS raises that of a 

school by one point. As noted by Hoxby and Weingarth (2005), if peer effects were linear in 

means then neither economists nor policy makers would care much about them, because 

regardless of how peers are arranged, society would have the same average level of 

outcomes.10

 

 

The inclusion of Varescs in model 4 identifies the impact of social diversity on performance 

scores. Firstly, it provides an empirical proof for the nonlinearity assumption made in the 

theory. In fact, if Varescs has a statistically and economically significant effect, then it is 

possible to say that social peer effects are non-linear in means and that the distribution of 

ESCS within a school has an important impact on achievements. Secondly, it provides a full 

image on the functioning of peer effects under different education systems. 

 

The first interesting finding concerns the statistical significance of the coefficient on Varescs. 

The coefficient is significant across all countries. This significance indicates that peer effects 

are non-linear in means and that the inclusion of ESCS and its average is not sufficient. This 

empirical finding confirms my theoretical assumptions. 

 

The signs on the Varescs coefficient differ between countries. For Germany and the UK, the 

sign is positive, while it is negative for Finland. A positive sign indicates that higher levels of 

social diversity lead to higher levels of performance scores. The reverse is true when the sign 

is negative. The values of the coefficients also differ between countries. An increase of one 

unit in the dispersion of ESCS leads to an increase of 16 points in performance scores in 

                                                 
10 The different models of Epple and Romano (1998, 2006) used a linear in means specification of peer effects.   
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Germany and 22 points in the UK. In contrast, an increase of one unit in Varescs leads to a 

decrease of 4 points in performance scores in Finland. 

 

In order to understand these findings, the context of each country should be considered. For 

instance, German and British schools have wide between-school disparities in their social 

intakes. Some schools are socially diverse while others are elitist. Elitist schools in the UK are 

mostly private; while in Germany they are the general education ones (note that vocational 

schools are usually attended by lower social class students). The presence of important 

between-school disparities in social intakes is reflected through the statistical and economic 

significance of the coefficient on Varescs. The positive sign indicates that an increase of 

within-school social diversity has a favourable effect on performance scores. In other words, 

educational policy should be concerned with fighting social elitism and segregation. In 

contrast, the sign of the coefficient in Finland is negative, indicating that a further increase in 

social diversity leads to a decrease in performance scores. However, the impact is 

quantitatively weak (only a 4 point decrease for a one unit increase in Varescs). The negative 

sign can be explained by the fact that Finnish schools already have wide social intakes. 

Hence, any further increase in social diversity has a slightly negative impact on achievements 

(this is a form of the focus model of peer effect, where too much disparities in students’ 

characteristics might lead to negative effects on their performance). One should note that in 

our theory we assumed that educational quality is increasing in the dispersion of social status 

and that educational performance is increasing in quality. Hence, Germany and the UK verify 

the theory (performance scores are increasing in Varescs) while Finland does not 

(performance scores are decreasing in Varescs). This is expected, since countries know for 

their differences cannot possibly verify the same theory.   

 

3. Comparison with the Results from PISA’s ‘Learning for Tomorrow’s World’ Report. 
 

In this subsection, the results obtained from model 3 are compared with those presented in the 

PISA 2003 report “Learning for tomorrow’s world”. Note that the PISA report did not assess 

the impact of all variables on performance scores. In fact, for some variables the analysis 

consisted of an interpretation of descriptive statistics without any estimation, and even when 

estimations were carried out, the models did not simultaneously control for a large array of 

variables. Hence, the results tend to diverge on a number of issues. 
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Table 5. The PISA 2003 report’s results (relation between different variables and 

performance scores in mathematics). 

Variables Germany  Finland  UK  
  Coefficient Coefficient Coefficient 
ESCS 17 33 31 
INTMAT 10.2 30.5 13.6 
DESCS 90 -2 58 
DDISCL 18.6 10.4 24.7 
Teacbeha -3.4 1.7 20.3 
Scmatedu 11 0.2 13 
Tcmorale 7.4 5 13.4 
Private -66 5 -87 
Private after controlling for 
ESCS and DESCS 14 16 1 

Numbers shown in bold stand for significant regression coefficients. 

 

The analyses carried within the PISA report followed several separate axes. Chapter 3 

assessed the distribution and impact on achievements of a number of student characteristics, 

including students’ attitudes, students’ learning strategies and students’ beliefs about 

themselves. Chapter 4 assessed the impact of student and school ESCS on performance scores 

along with the impact of immigration background. Finally, chapter 5 assessed the distribution 

and impact of some school variables, including school climate, school policies and practices 

and school resources. 

 

A major trait of the analyses undertaken in the PISA report is the use of a very limited number 

of variables in each regression. In fact, most regressions were bivariate, and the resulting 

coefficients can be described as correlation coefficients. This technique certainly suffers from 

the omitted variable bias. As mentioned before, when an important variable is omitted, and 

when this variable is correlated with one or more of the included independent variables, the 

model may suffer from heteroscedasticity and endogeneity. In other words, some of the 

included independent variables will be correlated with the error terms of the model.  

 

If heteroscedasticity or endogeneity exist, the coefficients will be inconsistent and the 

resulting inference will be distorted. Further, we can reasonably expect that the regression 

coefficients will be overestimated. More intuitively, when important variables are not 

accounted for, the omission may artificially inflate the effect of included ones. 
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Moreover, in comparative studies, some researchers assume that if the estimation bias is 

identical across countries, then it is no longer a problem. However, in reality, there is no 

explicit empirical or theoretical evidence to support this claim. In fact, the Hausman test 

carried out earlier shows that the bias that may arise from the omission of some variables (e.g. 

peer effects) differs in magnitude depending on the characteristics of each education system. 

For instance, countries with limited social stratification, such as Finland, are weakly affected 

by endogeneity bias since the correlation between student and school variables is weak. The 

reverse is true for Germany and the UK. Hence, bias is unlikely to be identical across 

countries, and consequently the interpretation of the results is distorted. 

 

A solution for bias problems is to control for all variables of interest, especially those that 

could be correlated with key independent variables included in the model. This has not been 

done in the PISA report. For instance, when student level ESCS was controlled for along with 

school average ESCS, other school characteristics that may be correlated with ESCS and 

DESCS were omitted. In our model, we controlled for a wide range of variables, including 

student and school characteristics as well as different forms of peer effects. 

 

In bivariate regression analyses (used in the PISA report), the omission of all variables except 

one leads to an artificial inflation of its effect. In comparison to our findings, the PISA results 

are systematically overestimated. In addition to this, it is possible to see that some coefficients 

seem to be counter intuitive. For instance, DESCS has a negative effect on performance 

scores in Finland. Similarly, in Germany the coefficient on DESCS is very high: an increase 

of one unit in DESCS leads to an increase of 90 points in achievements. In other words, an 

increase of one unit in average ESCS causes previously low performing students to become 

high achievers. Similarly, the coefficients on INTMAT, DDISCL and Tcmorale in the PISA 

report are in general overestimated, even if the extent of the bias seems to vary between 

countries. Note that, for some countries, the significance and sign of these coefficients are 

also different from ours.  

 

Another interesting finding concerns the coefficient on Scmatedu; the results are 

overestimated for all countries except for Finland, where they seem to be identical to those 

obtained in model 3. This is an indication that the absence of stratification, in the 

comprehensive Finnish system, reduces the level of correlations between Scmatedu and the 

variables relegated to the error term (e.g. other student and school characteristics), and thus 
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reduces the estimation bias. As a consequence, the coefficient on Scmatedu for Finland tends 

to be consistent and very close to the one obtained in model 3. 

 

The results for private schooling are interesting, too. When ‘Private’ was included separately, 

some of the coefficients were negative. However, when ESCS and DESCS were controlled 

for, all coefficients became positive even for Finland. In our model, the coefficient on 

‘private’ has a negative sign for all countries except the UK. These results are more intuitive 

and more realistic, especially for Finland, where private schools are attended by students who 

fail to be integrated in the public system, and the UK, where most private schools are elitist 

and expected to provide better results.  

 

Moreover, the negative sign on the coefficient for private schooling indicates that, when peer 

effects, school and student characteristics are controlled for, private schools do not have an 

advantage that stems from the fact that they are privately managed or funded. This finding has 

important consequences for educational policy. In fact, private schools do not have higher 

achievements because they are privately funded and managed, but because they have better 

inputs in terms of peer quality, funding and school climate. The only exception to this rule is 

the UK. When the different inputs are controlled for in the regression analysis, the apparent 

advantage of private schools turns into a negative effect (in Germany and Finland).  

 

In conclusion, we can say that the techniques used by PISA (simple bivariate regressions) are 

insufficient to decompose inequalities and to indentify their sources. By contrast, the 

multilevel approach, developed in the remit of this paper, allows us to overcome endogeneity 

and omitted variable bias, and to provide better and more consistent results on which 

educational policy can be based. 

 

Conclusion. 
 

The research developed in this paper sheds light on the mechanisms of stratification and their 

implications for estimation strategies. It explores level 2 endogeneity problems in multilevel 

modelling of education production functions which arise from correlations between student 

characteristics and omitted school variables. 
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Our findings show that the omission of key student level variables leads to level 2 

endogeneity bias. This bias can be dealt with through a transformation of the model according 

to the Mundlak approach (1978). Further, the bias resulting from omitted variables varies 

across countries according to the characteristics of each education system. Hence, it is no 

longer possible to claim that bias is identical across countries and that the results are affected 

in the same way. In fact, comprehensive education systems are less likely to be affected by 

level 2 endogeneity bias than stratified ones, since the correlation between student and school 

characteristics are weak. In addition to this, the paper confirms that social peer effects are 

non-linear in their means indicating that the distribution of peers within schools also affects 

their performance scores. Finally, the paper compares the results obtained through 

endogeneity robust multilevel regressions to those published by the OECD in the 2003 PISA 

report. The conclusion is that regression coefficients will always be overestimated unless the 

model simultaneously controls for student, school and peer characteristics. In this paper, our 

multilevel approach allows us to overcome endogeneity bias, and to provide better and more 

consistent results on which educational policy can rely. 

 

Appendix 
In this appendix, the multilevel estimation approach is developed. First, we start with a 

presentation of the Mundlak technique (1978) for panel data, and then we adapt it for 

multilevel estimation.  

 

The Mundlak approach for panel data. 

Before proceeding with the specification of the models, it is useful to start with the 

formulation developed in Maddala (1987). In his paper, the author reviewed some estimation 

issues that arise when the dependent variable is continuous in a panel data set. Note that a 

panel data has a number of cross-sectional units (individuals…) observed at several points of 

time. In other words, different time observations are nested within individual units. In the 

context of PISA, we have a similar structure. Students are nested within schools. Hence, it is 

possible to adapt the endogeneity robust estimation procedure developed by Mundlak (1978) 

in a panel data context to the PISA multilevel data. In a paper published in the Journal of 

human resources Maddala (1987) gave an interesting example on the estimation of production 

functions in firms; his model is the following:   itiitit XY εαβ ++= , with (i = 1, 2,…, N) and 

(t = 1, 2,…, T). 
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i  is a subscript denoting a firm and t is a subscript denoting a time period. itY is the output, 

itX is the vector of inputs for firm i in period t. β  is the regression coefficient, iα  is the firm 

specific unobserved inputs assumed to be constant over time. And finally, itε  is an error term 

assumed to be normally distributed with mean 0 and constant variance, )N(0,~ 2σε it .  

 

The element iα  can be treated as a fixed effect, and hence one iα  should be estimated for 

each of the firms. In contrast, iα  can also be treated as a random variable (exactly like itε ) as 

in Balestra and Nerlove (1966). When iα  is treated as random, the model is called a random 

effects model.  The random effects model is similar to our multilevel specification.11

iα

 It should 

be noted that in fixed effects models, level 2 endogeneity problems do not exist since is 

treated as an intercept. In contrast, in random effects models, level 2 endogeneity problems 

might exist since iα  is treated as random and since 0),cov( =iitX α might not be verified. 

 

The estimators of the regression coefficients are obtained in the following manner. First,  

∑= iti Y
T

Y 1  denotes the within-firm output average over time, and ∑= iY
N

Y 1  denotes the 

population average (global output average). It is possible to decompose the total sum of 

squares (TSS) as follows. ( ) ( ) ( ) YYYYiiitit BWYYYYYYTSS +=−+−=−= ∑∑ ∑ 222 .  

YYW  measures the within firm variations and YYB  measures the between firms variations. 

Using a similar decomposition of the variance and covariance, we obtain the estimates of β : 

XYXXWW 1ˆ −=β . With ( )( )∑ −−= iitiitXY YYXXW  for the fixed effects model. 

And )()(ˆ 1
XYXYXXXXGLS BWBW Θ−Θ+= −β as the estimator of β in the random effects model.  

With 22

2

ασσ
σ

T+
=Θ . (See Maddala 1971, p. 308-309). 

 

Fuller and Battese (1973), noted that the GLS estimation of the betas used in Maddala (1971) 

is similar to the OLS estimation with the transformed data: iit YY λ−  and jit XX λ−  where

Θ−=1λ . This transformation is worth noting for three reasons: 
                                                 
11 The subscript i is for the level two units (firms) and t is for the level one units (time observations). This should 
not be confused with the notation in our multilevel model, where i is the subscript for the level 1 units (students) 
and j is the one for the level 2 units (schools). 
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a) It has been used by Mundlak (1978) to solve the level 2 endogeneity problem. 

b)  This transformation rearranges the model in a form that is easily estimated with OLS. 

c) When 1=λ , the model is identical to the fixed effects one. 

 

Maddala gave two reasons for which the use of random effects models is more appropriate 

when the data shows some nesting features. 

 

a) When the dataset contains a large number of observations, instead of estimating N 

values for iα  with fixed effects models, it is possible to estimate only the mean and 

variance with random effects models. This saves a lot of degrees of freedom (Maddala 

1987, p. 309).12

b) The treatment of 

 

iα  as random allows us to measure firm-specific effects that we are 

ignorant about. In other terms, we are able to estimate the departures from the overall 

intercept for each firm. These departures reflect the effects of firm unobservable 

factors. 

c) Another important reason is that if we want to make inferences about the actual set of 

cross-section units included in the dataset, we should treat iα  as fixed. However, if we 

want to make inferences about the population from which these cross section units 

came, iα  should be treated as random. Usually the latter is the case (Maddala 1987, p. 

309). 

 

In the example utilized by Maddala (1987), it is also possible to add time constant variables. 

These are similar to our student constant variables, which are school characteristics. His 

model becomes itiiitit ZXY εαγβ +++= . With iZ being a vector of time constant variables. 

 

Mundlak (1978) studied the case where the iα ’s are correlated with the itX ’s. This is similar 

to our level 2 endogeneity problem, where the ijX ’s might be correlated with the jV ’s. The 

author argued that this endogeneity problem will be solved if iα  is assumed to depend on the 

                                                 
12 In the case of PISA, if the j0β is treated as fixed and is not decomposed into an overall intercept and a random 

part, then we have to estimate a 0β  for each school (this will cause the loss of j degrees of freedom). However, 

when j0β is decomposed in the following manner jj Vc +=0β ,  only the constant overall intercept c and the 
random parts are estimated, thus saving some degrees of freedom. 
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mean value of ijX , such as iii wX += πα . With iw a random part that has similar properties to 

iα . The equation becomes:   itiiitiit wZXXY εγβπ ++++= . 

Using the Fuller and Battese transformation of the model, the estimator of the beta from the 

random effects model is obtained through OLS estimation of the following equation: 

( ) ( ) ( ) itiiiitiiiit vZZXXXXYY +−+−+−=− λγλβλπλ  

Then, the equation is developed and iXβ  is added and subtracted from it: 

( ) itiiiiiitiiiit vZZXXXXXXYY +−+−+−+−=− λγββλββλππλ  

Finally, the equation becomes: 

( ) ( ) ( ) ( ) itiiitiiiit vZXXXXYY +−+−++−+=− λγββπλβπλ 1  

( )( ) ( ) ( ) itiiitiiit vZXXXYY +−+−++−=− λγββπλλ 11  

We denote ( )( )βπλδ +−= 1  and Θ−=1λ with 22

2

ασσ
σ

T+
=Θ  

Since )( iit XX − and iX  are independent ( iX is orthogonal to )( iit XX − ), it is possible to 

estimate each of δ , β  and γ  independently through OLS. The estimate of beta is 

XYXXWW 1ˆ −=β  ( β̂ is the within-group estimator). As it is possible to see, the estimate of the 

betas in the random effects model is identical to the aforementioned fixed effects estimator.  

The estimate of delta is ( ) ( )( )λδ −= ∑∑ − 1ˆ 1
iiii XYXX  and the estimate of pi is 

( ) ( ) βπ ˆˆ 1
−= ∑∑ −

iiii XYXX . Similarly, γ̂  can be obtained by regressing the time constant 

variable iZ  on the average of itY over time, which is iY . These estimates are robust and 

efficient. 

 

The models to be estimated. 

Recall that the general model is the following: ijjjijjij KXXY εγγββ ++++= • 210  with 

jj Vc +=0β . All the estimations were carried out using LIMDEP and they were programmed 

step by step. 

 

Model 1. 

In the first specification of the model, school peer effects are dropped from the equation. The 

model becomes: 
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ijjjijij VKXcY εγβ ++++= 2  

The Hausman test is performed in order to compare the fixed effects model, containing only 

student characteristics, to the random effects model, containing both ijX  and jK . Note that, 

in fixed effects models, jV is not treaded as random and j of the j0β  are estimated. Hence, 

level 2 endogeneity problems would not arise. In contrast, in random effects models jV is 

treated as random, and only an overall intercept c (the average intercept) and j school 

departures are estimated (the dispersion of these departures is denoted as the between school 

variance). In random effects models, level 2 endogeneity problems might arise (in model 1, 

the omitted school peer effects are absorbed by jV  and might be correlated with ijX ). Further, 

in the fixed effects models, the parameters 2γ  cannot be estimated since a school variable is 

constant for students attending the same school. Hence, the variables jK cannot be included 

in its estimation.  

 

The Hausman test. 

The Hausman test is a specification test named after Jerry Hausman; it was developed in his 

article of 1978 and it tests for the presence of level 2 endogeneity. In other words, the null 

hypothesis is that the random effects jV  are not correlated with any of the observable 

students’ variables. If the null hypothesis is correct, then the estimates of the coefficients are 

both consistent and efficient. It should also be said that after the transformation of the model, 

according to the Mundlak approach, the estimates of the betas (the within-group estimator) 

are consistent regardless of whether the null hypothesis is valid (see Maddala 1987, page 

311). 

 

 

Using the Fuller and Battese (1973) argument, the model is transformed in the following 

manner: ijjjjijjij wKKXXcYY +−+−+=− •• )()( 2 λγλβλ  

The estimator of  𝛽 is obtained through OLS estimation of this equation. 

 

We add and subtract jX •β  from the equation: 

ijjjjjjijjij wXXKKXXcYY +−+−+−+=− •••• ββλγλβλ )()( 2  

The equation is developed: 
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ijjjjjjijjij wXXKKXXcYY +−+−+−+=− •••• ββλγγλββλ 22  

And finally it becomes: 

ijjjjijjij wKXXXcYY +−+−+−+=− ••• 2)1()1()( γλβλβλ  

ijjjjijjij wKXXXcYY ++−+−+=− ••• 2)1()( δβλβλ  

With 22 )1( γλδ −=  and jλλ = , with
22

1
bjw

w
j

n σσ
σλ
+

−= . 

2
wσ : is the within school variance. 

2
bσ : is the between school variance. 

jn : is the number of observations in each school for an unbalanced data set (e.g. the number 

of students). 

Remark: 

The within- and between-school variances are the ones on ijε  and jV , respectively.  The 

variance of ijε  is 2σ  and the variance of jV  is 2
0τ . 2

wσ  and 2
bσ  are the estimates of 2σ  and 

2
0τ , respectively. 

 

Estimation: 

We assume that )( jij XX •−  and jK  are independent, so their effects can be estimated 

separately. 

1. We regress )( jij YY •−  on )( jij XX •− . β̂ is obtained as well as the variance 

components. 

2. We regress jY•  on jX • , and jK . 2γ̂  is obtained. 

3. We compute jλ  with 
22

1
bjw

w
j

n σσ
σλ
+

−=  

Then λ is computed as the national average of jλ ; hence jλλ = .  

4. We multiply 2γ̂  by )1( λ−  to obtain 2̂δ . 

The regression can be fitted through OLS as suggested by Fuller and Battese (1973).  
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Model 2. 

In the second specification of the model, pure school characteristics jK  are dropped from the 

education production function. The equation becomes: ijjjijij VXXcY εγβ ++++= •1  

 

As in model 1, the Hausman test is performed in order to compare the fixed effects model, 

containing only student characteristics, to the random effects model, containing both ijX  and 

jX • . 

 

Using the Fuller and Battese (1973) argument the model is transformed in the following 

manner: ijjjjijjij wXXXXcYY +−+−+=− •••• )()( 1 λγλβλ  

The estimator of beta is obtained through OLS estimation of this equation. 

 

We add and subtract jX •β  from the equation: 

ijjjjjjijjij wXXXXXXcYY +−+−+−+=− •••••• ββλγλβλ )()( 1  

We develop the equation: 

ijjjjjjijjij wXXXXXXcYY +−+−+−+=− •••••• ββλγγλββλ 11  

And finally it becomes: 

ijjjijjij wXXXcYY ++−−+−+=− ••• )()( 11 βλβλγγβλ  

ijjjijjij wXXXcYY ++−+−+=− ••• ))(1()( 1 βγλβλ  

ijjjijjij wXXXcYY ++−+=− ••• 1)( δβλ  

With ))(1( 11 βγλδ +−= ,  and jλλ = with  
22

1
bjw

w
j

n σσ
σλ
+

−= ,  

2
wσ : is the within-school variance. 

2
bσ : is the between-school variance. 

jn : is the number of observations in each school for an unbalanced data set (the number of 

students). 
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Estimation: 

Since )( jij XX •−  and jX •  are orthogonal, the effects of the two components can be 

estimated separately. 

 

1. We regress )( jij YY •− on )( jij XX •− . β̂ is obtained as well as the variance 

components. 

2. We regress jY•  on jX • . 
∧

+ )( 1 βγ  is obtained. 

3. We compute jλ  with 
22

1
bjw

w
j

n σσ
σλ
+

−=  

Then λ is computed as the national average of jλ ; hence jλλ = .  

4. We multiply 
∧

+ )( 1 βγ  by )1( λ−  to obtain
∧

+−= )()1(ˆ
11 βγλδ . 

5. We have β̂ ,
∧

+ )( 1 βγ , λ , and 1̂δ . It is possible to compute 1̂γ . 

The estimation is fitted through OLS, as suggested in Fuller and Battese (1973). 

 

Model 3. 

In the third specification, the full model is estimated.  

ijjjjijij VKXXcY εγγβ +++++= • 21  

The Hausman test is performed in order to compare the fixed effects model, containing only 

student characteristics, to the random effects model, containing ijX , jX • and jK . 

 

Using the Fuller and Battese (1973) argument the model is transformed in the following 

manner: ijjjjjjijjij wKKXXXXcYY +−+−+−+=− •••• )()()( 21 λγλγλβλ  

The estimator of beta is obtained through OLS estimation of this equation. 

 

We add and subtract jX •β  from the equation: 

ijjjjjjjjijjij wXXKKXXXXcYY +−+−+−+−+=− •••••• ββλγλγλβλ )()()( 21  

We develop the equation: 

ijjjjjjjjijjij wXXKKXXXXcYY +−+−+−+−+=− •••••• ββλγγλγγλββλ 2211  
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And finally it becomes: 

ijjjjijjij wKXXXcYY +−++−−+−+=− ••• 211 )1()()( γλβλβλγγβλ  

ijjjjijjij wKXXXcYY +−++−+−+=− ••• 21 )1())(1()( γλβγλβλ  

ijjjjijjij wKXXXcYY +++−+=− ••• 21)( δδβλ  

With ))(1( 11 βγλδ +−= , 22 )1( γλδ −= , 

 and jλλ =  with 
22

1
bjw

w
j

n σσ
σλ
+

−= .  

2
wσ : is the within-school variance. 

2
bσ : is the between-school variance. 

jn : is the number of observations in each school for an unbalanced data set (the number of 

students). 

 

Estimation: 

We assume that )( jij XX •−  and jK are independent and since )( jij XX •−  and jX •  are 

orthogonal, the effects of the different components can be estimated separately. 

 

1. We regress )( jij YY •−  on )( jij XX •− . β̂ is obtained as well as the variance 

components.  

2. We regress jY• on jX •  and jK . 
∧

+ )( 1 βγ  and 2γ̂ are obtained. 

3. We compute jλ  with 
22

1
bjw

w
j

n σσ
σλ
+

−=  

Then λ is computed as the national average of jλ ; hence jλλ = .  

4. We multiply 
∧

+ )( 1 βγ  and 2γ̂ by )1( λ−  to obtain: 
∧

+−= )()1(ˆ
11 βγλδ  and 

22 ˆ)1(ˆ γλδ −= . 

5. We have β̂ , 
∧

+ )( 1 βγ , λ  and 1̂δ . It is possible to compute 1̂γ . 
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Important remarks: 

b) In models 1 and 2, different sets of school variables have been dropped, while in 

model 3 the full equation was estimated. The content of these sets of variables, ( ijX ,

jX •  and jK ) is the same across the three models. The selection of each variable 

within each set has been done previously. We started with very simple models and 

added one variable after the other, while dropping non-significant ones. The result 

was three sets of variables controlling for student characteristics, peer effects and 

pure school characteristics. However, these steps are not included within the paper 

because of space constraints and since they represent the preliminary work in the 

development of the models. 

c) Notice that step one of the estimation procedure enables the estimation of the betas 

“within effects,” which measure the strength of the relation between student level 

variables and performance scores. Step two enables the measurement of the “between 

effects,” which are the effects of school characteristics on school average 

performance. School characteristics include averages of student variables and pure 

school variables. 

d) The transformation of the model according to the Mundlak approach is needed in 

order to ensure that the within and between parts of the model are independent and 

can be estimated separately. 

 

Model 4. 

Model 4 is identical to model 3, except that a new school level variable, which is the within-

school dispersion of ESCS (VARESCS), is added. VARESCS can be considered as a 

complement to average ESCS (social peer effects). If this dispersion has a significant effect, it 

would be possible to say that ESCS peer effects are non-linear. This model provides an 

answer to our theoretical investigations, and affirms whether social diversity has a positive 

effect on performance scores. The model is estimated using the same aforementioned 

Mundlak approach. 
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